Analysis of Plane Strain Rolling Rigid Plasttic Materials Using Finite Element Method
ثبت نشده
چکیده
In this research the rigid plastic material is applied to steady and nonsteady state strip rolling .Stresses and strains distribution in steady state plane strip rolling under the condition of constant of friction are calculated for work hardening and nonhardening materials .In order to attain a comprehensive understanding of the underlying process details, to check and select semi analytical models, highly sophisticated numerical approaches, based on the method of finite elements (F.E.M), have been performed by utilizing the non-linear capabilities of both ANSYS-11 Standard and Explicit., Analytical models, (with different reduction of areas) validated against each other and calibrated with real process data, are essential to determine proper rolling setups of aluminum (according to roller diameter, distance between rollers and rolling pressure). The calculated distribution of roll pressure exhibits, a peak at the entry which does not appear in the analysis by the slab method. The transverse direction (TD) rotation angle which increases an accurate elongation control system was built, which is based on precise mathematical process models for the prediction of rolling pressure, velocity and forward slip. To improve the quality of the rolled product rolling provides a slight reduction in thickness, thereby eliminating the yield point elongation focusing on the surface elements which exhibit a compressive stress. The TD rotation angle in the rolled specimens are very small and permanent deformation due to the rolling process, these result of completed shapes are in a good agreement with the experimental ones for aluminum strip .
منابع مشابه
Strain-Induced Martensite Transformation Simulations during Cold Rolling of AISI 301 Austenitic Stainless Steel
Austenite is a semi-stable phase in most stainless steels that deforms to martensite under Md30 and forms martensitetype ά and ε due to the deformation in the steels. Since the distribution of strain induced martensite plays animportant role in achieving desired properties, the main objective of the present work is to model martensitedistribution of ά during cold rolling using...
متن کاملFinite Element Analysis of Cross Rolling on AISI 304Stainless Steel:Prediction of Stress and Strain Fields
Finite element analysis for cross rolling of AISI 304 austenitic stainless steel has been carried out by rotating the plate by 90° in between the passes. To analyze stress and strain fields in the material for cross rolling, a full 3D model of work-roll and plate has been developed using rigid-viscoplastic finite element method. The stress and strain fields, considering von Mises yield criteria...
متن کاملAnalysis of Strain Inhomogeneity in Vortex Extrusion using Finite Element Method and Response Surface Methodology
The effect of geometrical parameters involved in vortex extrusion (VE) die design, on AA1050 aluminium alloy processed by VE were investigated using finite element analysis (FEA) and response surface methodology (RSM). For this, VE die length (L), reduction in area (RA), twist angle , and position of control points in Beziers' formulation (C1) were considered as input parameters and strain inho...
متن کاملDevelopment of a Predictive Finite Element Model For Investigation of Phases Behavior After Cold Rolling Process
One of the surface defects that arise in sheet metal working is when the part removes from the die. Since there are no external forces to make this defect, the origin of such fail is known as residual stress. Residual stress can develop in sheet metal forming due to non uniform deformation. In this paper, the workpiece is carbon steel with different volume fractions and arrangement of ferrite ...
متن کاملAn Efficient Strain Based Cylindrical Shell Finite Element
The need for compatibility between degrees of freedom of various elements is a major problem encountered in practice during the modeling of complex structures; the problem is generally solved by an additional rotational degree of freedom [1-3]. This present paper investigates possible improvements to the performances of strain based cylindrical shell finite element [4] by introducing an additio...
متن کامل